Extensions 1→N→G→Q→1 with N=C22 and Q=D4xC13

Direct product G=NxQ with N=C22 and Q=D4xC13
dρLabelID
D4xC2xC26208D4xC2xC26416,228

Semidirect products G=N:Q with N=C22 and Q=D4xC13
extensionφ:Q→Aut NdρLabelID
C22:1(D4xC13) = C13xC4:D4φ: D4xC13/C52C2 ⊆ Aut C22208C2^2:1(D4xC13)416,182
C22:2(D4xC13) = C13xC22wrC2φ: D4xC13/C2xC26C2 ⊆ Aut C22104C2^2:2(D4xC13)416,181

Non-split extensions G=N.Q with N=C22 and Q=D4xC13
extensionφ:Q→Aut NdρLabelID
C22.1(D4xC13) = C13xC4oD8φ: D4xC13/C52C2 ⊆ Aut C222082C2^2.1(D4xC13)416,196
C22.2(D4xC13) = C13xC23:C4φ: D4xC13/C2xC26C2 ⊆ Aut C221044C2^2.2(D4xC13)416,49
C22.3(D4xC13) = C13xC4wrC2φ: D4xC13/C2xC26C2 ⊆ Aut C221042C2^2.3(D4xC13)416,54
C22.4(D4xC13) = C13xC22.D4φ: D4xC13/C2xC26C2 ⊆ Aut C22208C2^2.4(D4xC13)416,184
C22.5(D4xC13) = C13xC8:C22φ: D4xC13/C2xC26C2 ⊆ Aut C221044C2^2.5(D4xC13)416,197
C22.6(D4xC13) = C13xC8.C22φ: D4xC13/C2xC26C2 ⊆ Aut C222084C2^2.6(D4xC13)416,198
C22.7(D4xC13) = C13xC2.C42central extension (φ=1)416C2^2.7(D4xC13)416,45
C22.8(D4xC13) = C13xD4:C4central extension (φ=1)208C2^2.8(D4xC13)416,52
C22.9(D4xC13) = C13xQ8:C4central extension (φ=1)416C2^2.9(D4xC13)416,53
C22.10(D4xC13) = C13xC4.Q8central extension (φ=1)416C2^2.10(D4xC13)416,56
C22.11(D4xC13) = C13xC2.D8central extension (φ=1)416C2^2.11(D4xC13)416,57
C22.12(D4xC13) = C22:C4xC26central extension (φ=1)208C2^2.12(D4xC13)416,176
C22.13(D4xC13) = C4:C4xC26central extension (φ=1)416C2^2.13(D4xC13)416,177
C22.14(D4xC13) = D8xC26central extension (φ=1)208C2^2.14(D4xC13)416,193
C22.15(D4xC13) = SD16xC26central extension (φ=1)208C2^2.15(D4xC13)416,194
C22.16(D4xC13) = Q16xC26central extension (φ=1)416C2^2.16(D4xC13)416,195

׿
x
:
Z
F
o
wr
Q
<