Extensions 1→N→G→Q→1 with N=C22 and Q=D4×C13

Direct product G=N×Q with N=C22 and Q=D4×C13
dρLabelID
D4×C2×C26208D4xC2xC26416,228

Semidirect products G=N:Q with N=C22 and Q=D4×C13
extensionφ:Q→Aut NdρLabelID
C221(D4×C13) = C13×C4⋊D4φ: D4×C13/C52C2 ⊆ Aut C22208C2^2:1(D4xC13)416,182
C222(D4×C13) = C13×C22≀C2φ: D4×C13/C2×C26C2 ⊆ Aut C22104C2^2:2(D4xC13)416,181

Non-split extensions G=N.Q with N=C22 and Q=D4×C13
extensionφ:Q→Aut NdρLabelID
C22.1(D4×C13) = C13×C4○D8φ: D4×C13/C52C2 ⊆ Aut C222082C2^2.1(D4xC13)416,196
C22.2(D4×C13) = C13×C23⋊C4φ: D4×C13/C2×C26C2 ⊆ Aut C221044C2^2.2(D4xC13)416,49
C22.3(D4×C13) = C13×C4≀C2φ: D4×C13/C2×C26C2 ⊆ Aut C221042C2^2.3(D4xC13)416,54
C22.4(D4×C13) = C13×C22.D4φ: D4×C13/C2×C26C2 ⊆ Aut C22208C2^2.4(D4xC13)416,184
C22.5(D4×C13) = C13×C8⋊C22φ: D4×C13/C2×C26C2 ⊆ Aut C221044C2^2.5(D4xC13)416,197
C22.6(D4×C13) = C13×C8.C22φ: D4×C13/C2×C26C2 ⊆ Aut C222084C2^2.6(D4xC13)416,198
C22.7(D4×C13) = C13×C2.C42central extension (φ=1)416C2^2.7(D4xC13)416,45
C22.8(D4×C13) = C13×D4⋊C4central extension (φ=1)208C2^2.8(D4xC13)416,52
C22.9(D4×C13) = C13×Q8⋊C4central extension (φ=1)416C2^2.9(D4xC13)416,53
C22.10(D4×C13) = C13×C4.Q8central extension (φ=1)416C2^2.10(D4xC13)416,56
C22.11(D4×C13) = C13×C2.D8central extension (φ=1)416C2^2.11(D4xC13)416,57
C22.12(D4×C13) = C22⋊C4×C26central extension (φ=1)208C2^2.12(D4xC13)416,176
C22.13(D4×C13) = C4⋊C4×C26central extension (φ=1)416C2^2.13(D4xC13)416,177
C22.14(D4×C13) = D8×C26central extension (φ=1)208C2^2.14(D4xC13)416,193
C22.15(D4×C13) = SD16×C26central extension (φ=1)208C2^2.15(D4xC13)416,194
C22.16(D4×C13) = Q16×C26central extension (φ=1)416C2^2.16(D4xC13)416,195

׿
×
𝔽